<u>POGLAVLJE 8.</u>

- 8.1 Konvekcija rješavanje transportne jednačine;
- 8.2 Centralno diferencijalna shema;
- 8.3 Upwind shema;
- 8.4 Preciznost Centralno diferencijalne sheme i upwind sheme;
- 8.5 Lažna difuzija i disperzija;
- 8.6 Sheme prvog reda na bazi tačnog rješenja;
- 8.6.1 Eksponencijalna shema;
- 8.6.2 Hibridna shema;
- 8.6.3 Power Law shema;

8.1 Konvekcija - rješavanje transportne jednačine

U ovom poglavlju biće prikazan postupak diskretizacije generalne transportne jednačine sa proizvoljnom skalarnom funkcijom ¢, koristeći metodu kontrolisane zapremine koja predstavlja osnovni alat kod svih CFD modela. Za početak ćemo razmatrati slučaj kada je brzinsko polje poznato u svim tačkama posmatranog domena, i na osnovu poznatog strujnog polja posmatraćemo kako se mijenja skalarna funkcija ¢ u polju. U realnim situacijama i strujno polje treba da se izračunava i obično je ono posledica zapreminskih ili spoljašnjih sila koje djeluju na fluidni djelić. U sledećem poglavlju biće prikazan slučaj simultanog rješavanja jednačina strujnog polja i generalne transportne jednačine sa temperaturom kao skalarnom veličinom.

Razmotrimo za početak dvodimenzioni pravougaoni domen koji je prikazan na slici 8.1. Domen je diskretizovan koristeći Dekartov koordinatni sistem (x,y), i radi jednostavnosti posmatrajmo slučaj kada su Δx i Δy konstantni, tj. da je mreža uniformna.

Slika 8.1. Mreža za slučaj konvekcije u 2-D domenu

Jednačina kojom se opisuje stacionarni transport funkcije ϕ se može pisati kao:

$$\nabla \cdot J = S \,, \tag{8.1}$$

gdje se fluks J sastoji od konvekcije i dufuzije istovremeno:

$$J = \rho \cdot V \cdot \phi - \Gamma \nabla \phi \,. \tag{8.2}$$

Vektor brzine V je definisan sa komponentama u x i y pravcu:

$$V = u \cdot i + v \cdot j \,. \tag{8.3}$$

Kao i ranije postupak diskretizacije počinje integracijom po kontrolisanoj zapremini jednačine (8.1):

$$\int_{\Delta V} \nabla \cdot J dV = \int_{\Delta V} S dV , \qquad (8.4)$$

tj primjenom tzv. Gausove teoreme prethodna jednačina se transformiše u:

$$\int_{A} J dA = \overline{S} \cdot \Delta V \,. \tag{8.5}$$

Kao i ranije smatra se da je fluks na površinama e,w,s,n konstantan, kao i da se vrijednosti funkcije sračunavaju u centrima zapremina. Takodje izvorni član se računa kao i ranije $\overline{S} = S_C + S_P \phi_P$. Konačno jednačina 8.5. se transformiše u diskretizovani oblik:

$$(J \cdot A)_e + (J \cdot A)_w + (J \cdot A)_s + (J \cdot A)_n = (S_C + S_P \phi_P) \cdot \Delta V, \quad (8.6)$$

gdje je:

$$A_{e} = \Delta y \cdot i$$

$$A_{w} = -\Delta y \cdot i$$

$$A_{n} = \Delta x \cdot j \quad .$$

$$A_{s} = -\Delta x \cdot j$$
(8.7)

Dalji proces diskretizacije je potpuno identičan kao i za slučaj difuzione jednačine. Razmotrimo za početak fluks J_eA_e. On se može pisati kao:

$$J_{e} \cdot A_{e} = \left(\rho u \phi\right)_{e} \Delta y - \Gamma_{e} \Delta y \left(\frac{\partial \phi}{\partial x}\right)_{e}, \qquad (8.8)$$

gdje članovi na desnoj strani jednačine predstavljaju tzv. konvektivni i difuzioni član redom posmatrano. Maseni fluks kroz površinu e ima oznaku:

$$F_e = (\rho u)_e \Delta y , \qquad (8.9)$$

i on je poznat s obzirom da je strujno polje definisano. Drugi član na desnoj strani jednačine može biti diskretizovan kao:

$$-D_e(\phi_E - \phi_P), \qquad (8.10)$$

gdje je koeficijent difuzije D_e definisan kao:

$$D_e = \Gamma_e \frac{\Delta y}{\left(\delta x\right)_e}.$$
(8.11)

Slične jednačine mogu se napisati i za ostale strane kontrolisane zapremine w,s,n. Medjusobni odnos konvektivnog i difuzionog člana zove se Peclet-ov broj:

$$P_e = \frac{F}{D} = \frac{\rho u(\delta x)}{\Gamma}, \qquad (8.12)$$

i bukvalno predstavlja mjeru ili relativni značaj koji imaju konvekcija ili difuzija u transportnom procesu.

Kao što se može vidjeti za izračunavanje fluksa J_e potrebno je poznavati vrijednost funkcije ϕ_e na granici i gradijenta ($\partial \phi / \partial x$) takodje na granici. Dok se gradijent može uzeti aproksimacija kao i kod slučaja čiste jednačine difuzije, odredjivanje vrijednosti funkcije ϕ na granici je nešto drugačije uslijed postojanja

strujanja. Kada se odrede vrijednosti fluksa na granicama tada se lako pišu jednačine za odredjivanje vrijednosti funkcija u zapreminama ϕ_i (i=P,E,W,S,N).

8.2 Centralno diferencijalna shema

Problem diskretizacije se svodi na problem odredjivanja odgovarajuće metode za aproksimaciju i odredjivanje granične vrijednosti ϕ_e . Jedan od prilaza može da bude tzv. centralno diferencijana shema koja podrazumijeva da se vrijednost funkcije ϕ mijenja linearno izmedju zapremina P i E, pa se za uniformnu mrežu može pisati:

$$\phi_e = \frac{\phi_E + \phi_P}{2},\tag{8.13}$$

pa se prvi konvektivni član može pisati kao:

$$(\rho u \phi)_e \Delta y = F_e \frac{\phi_E + \phi_P}{2}. \tag{8.14}$$

Slična jednačina se može napisati i za druge strane kontrolisane zapremine, pa se sabiranjem svih članova i svodjenjem jednačine (8.6) na izraz za izračunavanje vrijednosti funkcije ϕ_{P} :

$$a_P \phi_P = \sum_{nb} a_{nb} \phi_{nb} + b , \qquad (8.15)$$

gdje je:

$$a_{E} = D_{e} - \frac{F_{e}}{2}$$

$$a_{W} = D_{w} + \frac{F_{w}}{2}$$

$$a_{S} = D_{s} + \frac{F_{s}}{2}$$

$$a_{N} = D_{n} - \frac{F_{n}}{2}$$

$$a_{P} = \sum_{nb} a_{nb} - S_{P} \Delta x \Delta y + (F_{e} - F_{w} + F_{n} - F_{s})$$

$$b = S_{c} \Delta x \Delta y$$
(8.16)

Koeficijenti D i F u poslednjoj jednačini se računaju prema sledećim izrazima:

$$D_{e} = \Gamma_{e} \frac{\Delta y}{(\delta x)_{e}}$$

$$D_{w} = \Gamma_{w} \frac{\Delta y}{(\delta x)_{w}}$$

$$D_{n} = \Gamma_{n} \frac{\Delta x}{(\delta y)_{n}}$$

$$D_{s} = \Gamma_{s} \frac{\Delta x}{(\delta y)_{s}} . \qquad (8.17)$$

$$F_{e} = (\rho u)_{e} \Delta y$$

$$F_{w} = (\rho u)_{w} \Delta y$$

$$F_{n} = (\rho v)_{n} \Delta x$$

$$F_{s} = (\rho v)_{s} \Delta x$$

Poslednji član u jednačini za a_P (jednačina 8.16) predstavlja neto fluks u zapremini P, pa ako je zadovoljena jednačina kontinuiteta ovaj član je jednak nuli. Razmotrimo za početak dobijene jednačine ako je zadat vektor brzine V=(ui+vj) tako da je u>0 i v>0. Kada je $F_e>2D_e$ tada je član a_E negativan. Isto važi i za ostale članove koji množe vrijednosti funkcija u ostalim susjednim čvorovima. Tako se može desiti da vrijednost funkije u tački P nije ograničena vrijednostima u susjednim ćelijama. Dakle s obzirom da neće biti zadovoljen Srarborough-ov kriterijum, često se dešava da prilikom rješavanja sistema algebarskih jednačina imamo divergenciju rješenja, tj. da ne funkioniše Gaus-Siedel-ova shema.

Kada je $F_e < 2D_e$ i kada je $F_n < 2D_n$ tada su i koeficijenti u jednačini (8.16) pozitivni pa se dobija rješenje koje ima fizičkog smisla. Drugim jezikom potrebno je da bude $Pe_e = F_e/D_e < 2$, kao i $Pe_n = F_n/D_n < 2$ za uniformne mreže. Za zadatu brzinu ovaj uslov se može postići ako se mreža dovoljno usitni da član (δx) bude dovoljno mali. U nekim slučajevima da bi bio zadovoljen ovaj kriterijum potrebno je formirati veoma finu mrežu, što zahtijeva velike računarske resurse.

Primjer 8.1.

Posmatrajmo sada isti fizički model kao u poglavlju 6. Geometrija domena je pravougaona $L_x \propto L_y = 1 \propto 1$, koeficijent difuzije i gustina su je $\Gamma=1$, $\rho=1$. Zadati

granični uslovi $\Phi(0,y)=10.0$, $\Phi(x,0)=10.0$, $\Phi(L_{x,y})=200.0$, $\Phi(x,L_y)=200.0$. Neka su definisane brzine u x i y pravcu U i V i neka je U=5, V=5 i neka su konstantne za sve kontrolisane zapremine. Radi jednostavnosti posmatrajmo mrežu dimenzija $N_x x N_y=3x3$, koja obezbjedjuje da je $\Delta x=\Delta y=0.333$. Koeficijenti za sve kontrolisane zapremine dati su u tabeli P 8.1. Kao što se vidi koeficijenti za zapadnu i južnu stranu su znatno veći od koeficijenata za istočnu i sjevernu stranu. Takodje svi koeficijenti su pozitivni tako da je zadovoljen uslov $F_e<2D_e$ i $F_n<2D_n$. Sistem od 9 jednačina sa 9 nepoznatih može se riješiti nekom od iterativnih metoda. U tabeli P 8.2. date su vrijednosti tokom iterativnog rješavanja sistema jednačina Gaus-Siedel-ovom iteracionom shemom. Iz rezultata se vidi da je veći uticaj graničnih uslova gdje je vrijednost funkcije $\Phi=10$ nego onih gdje je $\Phi=200$, uslijed konvekcijeu x i y pravcu.

	ae	aw	as	an
1	0.167	3.667	3.667	0.167
2	0.167	3.667	1.833	0.167
3	0.167	3.667	1.833	0.333
4	0.167	1.833	3.667	0.167
5	0.167	1.833	1.833	0.167
6	0.167	1.833	1.833	0.333
7	0.333	1.833	3.667	0.167
8	0.333	1.833	1.833	0.167
9	0.333	1.833	1.833	0.333

Tabela P 8.2

0 10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000
1 10.000000	10.000000	20.555556	10.000000	10.000000	29.844444	20.555556	29.844444	56.022222
2 10.000000	10.301587	21.198942	10.301587	11.930159	32.817693	21.198942	32.817693	58.538048
3 10.013112	10.379238	21.305259	10.379238	12.249109	33.105444	21.305259	33.105444	58.781529
4 10.016489	10.392450	21.317289	10.392450	12.285199	33.136356	21.317289	33.136356	58.807686
5 10.017063	10.394005	21.318623	10.394005	12.289201	33.139750	21.318623	33.139750	58.810558
6 10.017131	10.394179	21.318770	10.394179	12.289643	33.140124	21.318770	33.140124	58.810874
7 10.017138	10.394198	21.318786	10.394198	12.289692	33.140165	21.318786	33.140165	58.810909
8 10.017139	10.394200	21.318788	10.394200	12.289697	33.140170	21.318788	33.140170	58.810913
9 10.017139	10.394200	21.318788	10.394200	12.289698	33.140170	21.318788	33.140170	58.810913

8.3 Upwind shema

Kao osnovnbi nedostatak sheme sa centralnom diferencom je to što koeficijenti u diskretizovanoj jednačini mogu biti negativni. Alterntativna shema koja bi mogla da prevazidje ovaj problem biće izložena u nastavku. U stranoj literaturi ona se označava kao "upwind" ili "shema uz struju". Po toj shemi vrijednost funkcije na granici kontrolisane zapremine biva donešena strujom iz susjedne ćelije tako da na primjer za stranu e važi:

$$\begin{aligned}
\phi_e &= \phi_P \quad F_e \ge 0 \\
\phi_e &= \phi_E \quad F_e \le 0
\end{aligned}$$
(8.18)

Slična jednačina može biti napisana i za ostale stranice kontrolisane zapremine. Koristeći prethodnu jednačinu i jednačinu 8.12 mogu se izvesti koeficijenti diskretizovane jednačine 8.15 kao:

$$a_{E} = D_{e} + Max[-F_{e},0]$$

$$a_{W} = D_{w} + Max[F_{w},0]$$

$$a_{S} = D_{s} + Max[F_{s},0]$$

$$a_{N} = D_{n} + Max[-F_{n},0]$$

$$a_{P} = \sum_{nb} a_{nb} - S_{P}\Delta x \Delta y + (F_{e} - F_{w} + F_{n} - F_{s})$$

$$b = S_{C}\Delta x \Delta y$$
(8.19)

Operator Max[a,b] daje veću vrijednost u apsolutnom smislu od dva broja a ili b. Kao što se vidi upwind shema daje sve koeficijente pozitivne pa je u slučaju nepostojanja izvora (S=0) vrijednost funkcije ϕ_P ograničena vrijednostima u susjednim zapreminama. Ova metoda obezbjedjuje fizički stabilne rezultate i idealna je za iterativno rješavanje jer proces garantovano konvergira ka rješenju. Medjutim, profil funkcije ϕ sa ovom diskretizacionom shemom može biti diskontinualan čak i kada je koeficijent difuzije jednak nuli. Kasnije ćemo razmotriti neke druge sheme višeg reda koje nemaju ovu karakteristiku.

Primjer 8.2.

Posmatrajmo isti fizički model kao u primjeru 8.1. Ista je i geometrija i isti su početni i granični uslovi, dakle L_x x L_y = 1 x 1, koeficijent difuzije i gustina su Γ =1, ρ =1, $\Phi(0,y)$ =10.0, $\Phi(x,0)$ =10.0, $\Phi(L_x,y)$ =200.0, $\Phi(x,L_y)$ =200.0. Brzine u x i y pravcu su U=5, V=5 i konstantne su za sve kontrolisane zapremine. Posmatra se ista mreža kao i ranije N_xxN_y=3x3, pa je Δx = Δy =0.333. Koeficijenti za sve kontrolisane zapremine dati

su u tabeli P5.3. Kao što se vidi svi koeficijenti su pozitivni i ne zavise od vrijednosti brzina u i v. Takodje za razliku od centralne sheme vrijednosti koeficijenata za istočni i sjeverni član su veći nego za slučaj centralne sheme. Kao i ranije sistem od 9 jednačina sa 9 nepoznatih može se riješiti nekom od iterativnih metoda. U tabeli P 8.4. date su vrijednosti tokom iterativnog rješavanja sistema jednačina Gaus-Siedelovom iteracionom shemom. Iz rezultata se vidi da su vrijednosti funkcije Φ veće u zoni bližoj zapadnoj i južnoj granici u odnosu na prethodni slučaj jer su koeficijenti za istočnu i sjevernu stranu veći u odnosu na prošli slučaj.

Tabela P	8.3
----------	-----

	ae	aw	as	an
1	1.000	3.667	3.667	1.000
2	1.000	3.667	2.667	1.000
3	1.000	3.667	2.667	2.000
4	1.000	2.667	3.667	1.000
5	1.000	2.667	2.667	1.000
6	1.000	2.667	2.667	2.000
7	2.000	2.667	3.667	1.000
8	2.000	2.667	2.667	1.000
9	2.000	2.667	2.667	2.000

Tabela P 8.4

-									
0	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000
1	10.000000	10.000000	50.714286	10.000000	10.000000	68.628571	50.714286	68.628571	124.930612
2	10.000000	14.885714	58.391837	14.885714	29.542857	91.130776	58.391837	91.130776	137.789015
3	11.046939	18.487184	61.831778	18.487184	38.299072	96.576554	61.831778	96.576554	140.900888
4	11.818682	20.197680	62.903968	20.197680	41.028282	98.166427	62.903968	98.166427	141.809387
5	12.185217	20.771140	63.238157	20.771140	41.878945	98.654599	63.238157	98.654599	142.088342
6	12.308101	20.952645	63.342320	20.952645	42.144087	98.806251	63.342320	98.806251	142.175001
7	12.346995	21.009407	63.374786	21.009407	42.226728	98.853485	63.374786	98.853485	142.201991
8	12.359159	21.027113	63.384906	21.027113	42.252487	98.868204	63.384906	98.868204	142.210403
9	12.362953	21.032632	63.388060	21.032632	42.260515	98.872792	63.388060	98.872792	142.213024
10	12.364135	21.034352	63.389043	21.034352	42.263018	98.874222	63.389043	98.874222	142.213841
11	12.364504	21.034889	63.389349	21.034889	42.263798	98.874668	63.389349	98.874668	142.214096
12	12.364619	21.035056	63.389445	21.035056	42.264041	98.874807	63.389445	98.874807	142.214175
13	12.364655	21.035108	63.389474	21.035108	42.264117	98.874850	63.389474	98.874850	142.214200
14	12.364666	21.035124	63.389484	21.035124	42.264140	98.874864	63.389484	98.874864	142.214208
15	12.364669	21.035129	63.389487	21.035129	42.264148	98.874868	63.389487	98.874868	142.214210
16	12.364671	21.035131	63.389487	21.035131	42.264150	98.874869	63.389487	98.874869	142.214211
17	12.364671	21.035131	63.389488	21.035131	42.264151	98.874870	63.389488	98.874870	142.214211

8.4 Preciznost Centralno diferencijalne sheme i upwind sheme

Razmotrimo sada za početak tačnost, tj. grešku koja se pravi naprijed navedenim aproksimacijama za vrijednost funkcije na graničnoj površini kontrolisane zapremine ϕ_{e} . Radi jednostavnosti posmatrajmo uniformnu mrežu kao na slici 8.2. Koristeći razvoj funkcije u Tajlorov red u okolini tačke e može se pisati:

$$\phi_P = \phi_e - \left(\frac{\Delta x}{2}\right) \left(\frac{d\phi}{dx}\right)_e + \frac{1}{2} \left(\frac{\Delta x}{2}\right)^2 \left(\frac{d^2\phi}{dx^2}\right)_e + O\left((\Delta x)^3\right), \tag{8.20}$$

$$\phi_E = \phi_e + \left(\frac{\Delta x}{2}\right) \left(\frac{d\phi}{dx}\right)_e + \frac{1}{2} \left(\frac{\Delta x}{2}\right)^2 \left(\frac{d^2\phi}{dx^2}\right)_e + O\left((\Delta x)^3\right)_.$$
(8.21)

Iz jednačine se vidi da je:

.

$$\phi_e = \phi_P + O(\Delta x), \tag{8.22}$$

što znači da upwind metoda aproksimacije je shema prvog reda preciznosti. Sabiranjem jednačina (8.20) i (8.21) dobija se:

$$\phi_{e} = \frac{\phi_{P} + \phi_{E}}{2} - \frac{(\Delta x)^{2}}{8} \left(\frac{d^{2}\phi}{dx^{2}}\right)_{e} + O((\Delta x)^{3}), \qquad (8.23)$$

odakle se vidi da je centralna shema drugog reda preciznosti.

Slika 8.2. Jednodimenziona uniformna mreža za CV metodu

8.5 Lažna difuzija i disperzija

Sada je potrebno sagledati slučaj transportne jednačine kada nema difuzije (Γ =0) za slučajeve centralne i upwind sheme, u cilju odredjivanja preciznosti sheme. Osnovna karakteristika upwind sheme je da je ona veoma "difuzivna" što znači da je uticaj vrijednosti iz susjedne ćelije jako velik u pravcu uz struju. Neka je za početak poznata brzina strujanja u i v, neka je strujanje stacionarno i neka je koeficijent difuzije Γ =0. Transportna jednačina postaje:

$$\frac{\partial}{\partial x}(\rho u\phi) + \frac{\partial}{\partial y}(\rho v\phi) = 0.$$
(8.24)

Neka je u>0, v>0 i ρ =const. Ako se koristi upwind shema za diskretizaciju dobija se diskretizovani oblik prethodne jednačine u obliku:

$$\rho u \frac{\phi_P - \phi_W}{\Delta x} + \rho v \frac{\phi_P - \phi_S}{\Delta y} = 0.$$
(8.25)

Ako se sada izvrši razvijanje funkcije ϕ u Tajlorov red u okolini tačke P dobijaju se sledeći izrazi za vrijednosti funkcija u susjednim tačkama W,S:

$$\phi_{W} = \phi_{P} - \Delta x \frac{\partial \phi}{\partial x} + \frac{(\Delta x)^{2}}{2!} \frac{\partial^{2} \phi}{\partial x^{2}} - \frac{(\Delta x)^{3}}{3!} \frac{\partial^{3} \phi}{\partial x^{3}} + \dots$$

$$\phi_{S} = \phi_{P} - \Delta y \frac{\partial \phi}{\partial y} + \frac{(\Delta y)^{2}}{2!} \frac{\partial^{2} \phi}{\partial y^{2}} - \frac{(\Delta y)^{3}}{3!} \frac{\partial^{3} \phi}{\partial y^{3}} + \dots$$
(8.26)

Iz poslednje jednačine mogu se odrediti vrijednosti članova na lijevoj strani jednačine (8.25) kao:

$$\frac{\phi_{P} - \phi_{W}}{\Delta x} = \frac{\partial \phi}{\partial x} - \frac{(\Delta x)}{2!} \frac{\partial^{2} \phi}{\partial x^{2}} + \frac{(\Delta x)^{2}}{3!} \frac{\partial^{3} \phi}{\partial x^{3}} + \dots$$

$$\frac{\phi_{P} - \phi_{S}}{\Delta y} = \frac{\partial \phi}{\partial y} - \frac{(\Delta y)}{2!} \frac{\partial^{2} \phi}{\partial y^{2}} + \frac{(\Delta y)^{2}}{3!} \frac{\partial^{3} \phi}{\partial y^{3}} + \dots$$
(8.27)

Smjenom poslednje dvije jednačine u jednačinu 8.25 dobija se konačno:

$$\rho u \frac{\partial \phi}{\partial x} + \rho v \frac{\partial \phi}{\partial y} = \frac{\rho u \Delta x}{2} \frac{\partial^2 \phi}{\partial x^2} + \frac{\rho u \Delta y}{2} \frac{\partial^2 \phi}{\partial y^2} + O(\Delta x^2) + O(\Delta y^2), \quad (8.28)$$

ili ako se radi jednostavnosti uzme da je mreža uniformna ($\Delta x=\Delta y$) dobija se konačno izraz:

$$\rho u \frac{\partial \phi}{\partial x} + \rho v \frac{\partial \phi}{\partial y} = \frac{\rho u \Delta x}{2} \left(\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} \right) + O(\Delta x^2) .$$
(8.29)

Poslednja diferencijalna jednačina se zove modifikovana jednačina jer je dobijena postupkom unazad, iz algebarske jednačine koristeći razvoj funkcije u Tajlorov red u okolini tačke P. Lijeva strana jednačine je originalna polazna jednačina 8.24, dok se na desnoj strani pojavljuje član koji nema veze za fizikom procesa a vidi se da ima isti oblik kao klasični difuzioni član u generalnoj transportnoj jednačini. U ovom slučaju

vještački koeficijent difuzije je $\rho u \Delta x/2$. Dakle rješavanjem klasične jednačine bez difuzije primjenom upwind sheme dobija se difuzivnost koja je opisana prvim članom na desnoj strani jednačine 8.29. Ovaj fenomen se zove u literaturi lažna, vještačka ili numerička difuzija. Ona je proporcionalna dimenziji mreže, pa se usitnjavanjem mreže ovaj efekat može izbjeći.

Slična analiza se može sprovesti i za tzv. centralno diferencijalnu shemu polazeći takodje od jednačine 8.24. Diskretizovana jednačina prema ovoj shemi ima oblik:

$$\rho u \frac{\phi_E - \phi_W}{2\Delta x} + \rho v \frac{\phi_N - \phi_S}{2\Delta y} = 0, \qquad (8.30)$$

a ako se zna da su vcrijednosti funkcija ϕ_E i ϕ_N razvijeni takodje u okolini tačke P u Tajlorov red:

$$\phi_E = \phi_P + \Delta x \frac{\partial \phi}{\partial x} + \frac{(\Delta x)^2}{2!} \frac{\partial^2 \phi}{\partial x^2} + \frac{(\Delta x)^3}{3!} \frac{\partial^3 \phi}{\partial x^3} + \dots$$

$$\phi_N = \phi_P + \Delta y \frac{\partial \phi}{\partial y} + \frac{(\Delta y)^2}{2!} \frac{\partial^2 \phi}{\partial y^2} + \frac{(\Delta y)^3}{3!} \frac{\partial^3 \phi}{\partial y^3} + \dots$$
(8.31)

dobija se da je:

$$\frac{\phi_E - \phi_W}{2\Delta x} = \frac{\partial \phi}{\partial x} + \frac{(\Delta x)^2}{3!} \frac{\partial^3 \phi}{\partial x^3} + \dots$$

$$\frac{\phi_N - \phi_S}{2\Delta y} = \frac{\partial \phi}{\partial y} + \frac{(\Delta y)^2}{3!} \frac{\partial^3 \phi}{\partial y^3} + \dots$$
(8.32)

Ako se uzme kao i ranije da je mreža uniformna i ako se poslednja jednačina smijeni u jednačinu (8.30) dobija se:

$$\rho u \frac{\partial \phi}{\partial x} + \rho v \frac{\partial \phi}{\partial y} = -\frac{\rho u (\Delta x)^2}{2} \left(\frac{\partial^3 \phi}{\partial x^3} + \frac{\partial^3 \phi}{\partial y^3} \right) + O(\Delta x^3) . \tag{8.33}$$

Kao što se vidi centralno diferencijalna shema takodje proizvodi dodatni član na desnoj strani ali sada reda višeg za 1, dok se treći izvod može okarakterisati kao disperzija, tj oscilatorno mijenjanje funkcije φ oko tačnog rješenja. Dakle "upwind" shema vodi ka pojavi lažne difuzije dok centralna shema dovodi do pojave disperzije.

8.6 Shema prvog reda na bazi tačnog rješenja

U literaturi koja se bavi problemima diskretizacije transportnih jednačina postoji veliki broj shema kojima se vrši aproksimacija vrijednosti funkcije na graničnoj površini između dvije susjedne zapremine. Jedan od pristupa je baziran na tačnom rješenju transportne jednačine za 1-D problem, za stacionarni slučaj i kada je poznato brzinsko polje. Ponašanje jednačina u multidimenzionalnom slučaju je slično i ima iste karakteristike kao i tzv. upwind shema.

8.6.1 Eksponencijalna shema

Jednodimenzionalna konvektivno – difuziona jednačina kada nema izvornog člana kada je proces stacionaran ima oblik:

$$\frac{\partial}{\partial x}(\rho u\phi) - \frac{\partial}{\partial x}\left(\Gamma\frac{\partial\phi}{\partial x}\right) = 0.$$
(8.34)

Ako se zadaju granični uslovi kao:

$$\phi = \phi_0 \quad x = 0$$

$$\phi = \phi_L \quad x = L'$$
(8.35)

jednačina 8.34 ima tačno rješenje:

$$\frac{\phi - \phi_0}{\phi_L - \phi_0} = \frac{e^{Pe \cdot \frac{x}{L}} - 1}{e^{Pe} - 1},$$
(8.36)

gdje je Pe Pecklet-ov broj definisan kao odnosu konvekcije i difuzije:

$$Pe = \frac{\rho u L}{\Gamma}.$$
(8.37)

Osnovna intencija je da se koristi tačno rješenje 8.36 da bi se definisali vrijednost funkcije na granici kao i gradijent funkcije na granici. Ako se sada razmotri jednačina slična jednačini 5.32 ali sa izvornim članom:

$$\frac{\partial}{\partial x}(\rho u\phi) - \frac{\partial}{\partial x}\left(\Gamma\frac{\partial\phi}{\partial x}\right) = S, \qquad (8.38)$$

i izvrši njena diskretizacija za čeliju P kao što je to prethodno uradjeno na osnovu geometrije prikazane na slici 8.2, dobija se jednačina:

$$(J \cdot A)_e + (J \cdot A)_w = (S_C + S_P \phi_P) \cdot \Delta V, \qquad (8.39)$$

gdje su:

$$J_{e} \cdot A_{e} = (\rho u \phi)_{e} - \Gamma_{e} \left(\frac{\partial \phi}{\partial x} \right)_{e}$$

$$J_{w} \cdot A_{w} = -(\rho u \phi)_{w} + \Gamma_{w} \left(\frac{\partial \phi}{\partial x} \right)_{w}$$
(8.40)

ako se uzme da je A_e =i, A_w =-i. Sada je potrebno u jednačine 5.38 umjesto vrijednosti funkcije na granicama kao i vrijednosti prvog izvoda unijeti na osnovu tačnog rješenja 8.36. Tada se dobija:

$$J_{e} \cdot A_{e} = F_{e} \left(\phi_{P} + \frac{\phi_{P} - \phi_{E}}{e^{Pe_{e}} - 1} \right), \tag{8.41}$$

gdje je Pee Peclet-ov broj na granici e definisan kao:

$$Pe = \frac{(\rho u)_e \, \delta x_e}{\Gamma_e} = \frac{F_e}{D_e} \,. \tag{8.42}$$

Slične jednačine se mogu napisati i za granicu w, pa se zamjenom jednačina 8.41 i sličnom jednačinom za granicu w, i nakon sabiranja sličnih članova dobija algebarski izraz za odredjivanje vrijednosti funkcije tački P:

$$a_P \phi_P = a_E \phi_E + a_W \phi_W + b , \qquad (8.43)$$

gdje je:

$$a_{E} = \frac{F_{e}}{e^{Pe_{e}} - 1}$$

$$a_{W} = \frac{F_{W}e^{Pe_{W}}}{e^{Pe_{W}} - 1}$$

$$a_{P} = a_{E} + a_{W} - S_{P}\Delta V + F_{e} - F_{W}$$

$$b = S_{C}\Delta V$$
(8.44)

Ova shema uvijek obezbjeđuje pozitivne koeficijente i rješenja koja imaju fizičkog smilsla i koja su uvijek ograničena vrijednošću u susjednim zapreminama kada je S=0. Lako se dokazuje da je ova shema prvog reda preciznosti. S obzirom da sračunavanje eksponencijalne vrijednosti funkcije zahtijeva značajno računarsko vrijeme ova se shema ne koristi u ovom obliku već se aproksimira tzv. hibridnom i power-law shemom, koje će biti prikazane u nastavku.

Primjer 8.3.

Neka je zadata transportna jednačina $\frac{\partial}{\partial x}(\rho u \phi) - \frac{\partial}{\partial x}\left(\Gamma \frac{\partial \phi}{\partial x}\right) = S$ i neka su zadati granični uslovi $\Phi(0)=10.0$ i $\Phi(L)=200.0$. Neka je dimenzija domena L=1, koeficijent difuzije i gustina su $\Gamma=1$, $\rho=1$. Brzine u x pravcu je U=5 i konstantna je za sve kontrolisane zapremine. Broj podjela domena je N=10, pa je $\Delta x=0.1$. Koeficijenti za sve kontrolisane zapremine prema eksponencijalnoj shemi dati su u tabeli P 8.5. Svi koeficijenti su pozitivni. Kao i ranije sistem od 9 jednačina sa 9 nepoznatih može se riješiti nekom od iterativnih metoda. U tabeli P 8.6. date su vrijednosti dobijene tokom procesa iterativnog rješavanja sistema jednačina Gaus-Siedel-ovom iteracionom shemom.

Tabela P 8.5

	ae	aw
1	0.007707	0.022604
2	0.007707	0.012707
3	0.007707	0.012707
4	0.007707	0.012707
5	0.007707	0.012707
6	0.007707	0.012707
7	0.007707	0.012707
8	0.007707	0.012707
9	0.007707	0.012707
10	0.017604	0.012707

Tabela P 8.6

1	2	3	4	5	6	7	5	89	10		
10.366078	11.43969	94	13.209787	16.128178	20.939791	28.87	2802	41.95212	6 63.516287	99.069578 157.687045	

8.6.2 Hibridna shema

Osnovni cilj tzv. hibridne sheme je da se aproksimira ponašanje koeficijenata iz eksponencijalne sheme uzimajući u obzir vrijednosti koje se dobijaju u graničnim slučajevima. Na primjer koeficijent a_E dobijen na osnovu tačnog rješenja može se pisati kao:

$$\frac{a_E}{D_e} = \frac{Pe_e}{e^{Pe_e} - 1},$$
(8.45)

odakle se lako zaključuje da važe sledeće zakonitosti:

$$\frac{a_E}{D_e} \to 0 \ za \ Pe_e \to \infty$$

$$\frac{a_E}{D_e} \to -Pe_e \ za \ Pe_e \to -\infty$$

$$\frac{a_E}{D_e} \to 1 - \frac{Pe_e}{2} \ za \ Pe_e = 0$$
(8.46)

Hibridna shema je bazirana na definisanju tri granične tangente koje su prikazane na slici 8.3, a prema kojoj važi sledeća zakonitost:

$$\frac{a_E}{D_e} = 0 \ za \ Pe_e > 2$$

$$\frac{a_E}{D_e} = 1 - \frac{Pe_e}{2} \ za \ -2 \ge Pe_e \le 2$$

$$\frac{a_E}{D_e} = -Pe_e \ za \ Pe_e \le -2$$
(8.47)

Jednačina za kontrolisanu zapreminu P ima oblik kao i jednačina 8.43 dok se koeficijenti sračunavaju prema sledećem algoritmu:

$$a_{E} = Max \left[-F_{e}, D_{e} - \frac{F_{e}}{2}, 0 \right]$$

$$a_{W} = Max \left[F_{W}, D_{W} + \frac{F_{W}}{2}, 0 \right]$$

$$a_{P} = a_{E} + a_{W} - S_{P}\Delta V + (F_{e} - F_{W})$$

$$b = S_{C}\Delta V$$
(8.48)

Primjer 8.4.

Neka je zadata ista transportna jednačina $\frac{\partial}{\partial x}(\rho u \phi) - \frac{\partial}{\partial x}\left(\Gamma \frac{\partial \phi}{\partial x}\right) = S$ kao u prethodnom slučaju i neka su i neka su zadati granični uslovi i svi ostali podaci. Neka je dimenzija domena L=1, koeficijent difuzije i gustina su Γ =1, ρ =1. Brzine u x pravcu je U=20 i konstantna je za sve kontrolisane zapremine. Brzina je uzeta tako da će svi članovi a_E biti jednaki nuli dok će samo postojati članovi a_W koji su različiti od nule. Dakle vidi se da je hibridna shema ista kao i centralna shema ali da obuhvata i uslove kada je F_e>2De. Broj podjela domena je kao i ranije N=10, pa je Δx =0.1. Koeficijenti za sve kontrolisane zapremine prema hibridnoj shemi dati su u tabeli P 8.7. S obzirom da je istočni koeficijent jednaka nuli za sve kontrolisane zapremine vrijednost funkcije u cijelom domenu je jednaka vrijednosti na lijevoj granici domena kao što je prikazano u tabeli P8.7.

Tabel	a P	8.7
-------	-----	-----

ae	aw
1 0.000000	0.040000
2 0.000000	0.020000
3 0.000000	0.020000
4 0.000000	0.020000
5 0.000000	0.020000
6 0.000000	0.020000
7 0.000000	0.020000
8 0.000000	0.020000
9 0.000000	0.020000
10 0.000000	0.020000

Tabela P 8.8

1	2 3	4	ŀ	5	6	7	8	9	10	
10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	10.000000	

Slika 8.3. Varijacije izraza a_E/D_E za tačno rješenje i hibridnu shemu

8.6.3 <u>"Power Law" shema</u>

Power law shema je bazirana na fitovanju polinom petog stepena tačnog rješenja koje je dato jednačinom 8.36. Ova shema koristi sledeći izraz za odredjivanje koeficijenta a_E/D_E :

$$\frac{a_E}{D_e} = Max \left[0, \left(1 - \frac{0.1|F_e|}{D_e} \right)^5 \right] + Max \left[0, -Pe_e \right].$$
(8.49)

Ovaj izraz ima sve one osobine koje imaju i izrazi za hibridnu shemu, i pogodan je za komjutersko izračunavanje jer daje slične vrijednosti kao i eksponencijalna shema za znatno manje kompjuterskog vremena.

Primjer 8.5.

Neka je zadata ista transportna jednačina kao u prethodnom primjeru i neka su isti svi podaci kao u prethodnim primjerima (brzina U=5 je kao u primjerima prije hibridne sheme). Koeficijenti za sve kontrolisane zapremine prema "power law" shemi dati su u tabeli P 8.9. Vrijednosti dobijene proračunom prikazane su u tabeli P8.10.

Tabela P 8.9

ae	aw
1 0.007738	0.022622
2 0.007738	0.012738
3 0.007738	0.012738
4 0.007738	0.012738
5 0.007738	0.012738
6 0.007738	0.012738
7 0.007738	0.012738
8 0.007738	0.012738
9 0.007738	0.012738
10 0.017622	0.012738

Tabela P 8.10

1	2 3	4	<u>l</u>	5	6	7	8	9	10	
10.371027	11.455746	13.241387	16.180869	21.019780	28.985488	42.098460	63.684744	99.219604	157.716299	

U tabeli P 8.11 prikazane su uporedne vrijednosti dobijene svim shemama zajedno sa tačnim rješenjem koje se dobija na osnovu izraza 8.36.

Tabela P5.11

1		2	3	4	5	6	7	8	9	10	
upwind	10.804161	12.814563	15.830167	20.353573	27.138683	37.316349	52.582849	75.482600	109.832228	161.356669	
centr.	10.288961	11.252166	12.857507	15.533076	19.992359	27.424497	39.811396	60.456227	94.864281	152.211037	
ekspon.	10.366078	11.439694	13.209787	16.128178	20.939791	28.872802	41.952126	63.516287	99.069578	157.687045	
hibridna	10.288961	11.252166	12.857507	15.533076	19.992359	27.424497	39.811396	60.456227	94.864281	152.211037	
power	10.371027	11.455746	13.241387	16.180869	21.019780	28.985488	42.098460	63.684744	99.219604	157.716299	
tačno rj.	10.366079	11.439695	13.209789	16.128181	20.939795	28.872807	41.952131	63.516291	99.069581	157.687046	